Venom Evolution: Gene Loss Shapes Phenotypic Adaptation
نویسنده
چکیده
Snake venoms are variable protein mixtures with a multitude of bioactivities. New work shows, surprisingly, that it is the loss of toxin-encoding genes that strongly influences venom function in rattlesnakes, highlighting how gene loss can underpin adaptive phenotypic change.
منابع مشابه
Contrasting modes and tempos of venom expression evolution in two snake species.
Selection is predicted to drive diversification within species and lead to local adaptation, but understanding the mechanistic details underlying this process and thus the genetic basis of adaptive evolution requires the mapping of genotype to phenotype. Venom is complex and involves many genes, but the specialization of the venom gland toward toxin production allows specific transcripts to be ...
متن کاملFunctional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes.
Understanding the molecular bases of adaptations requires assessing the functional significance of phenotypic variation at the molecular level. Here we conduct such an assessment for an adaptive trait (snake venom proteins) which shows high levels of interspecific variation at the molecular level. We tested the toxicity of venom from four taxa of Sistrurus rattlesnakes with different diets towa...
متن کاملVenom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations.
SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to th...
متن کاملThe role of environments with extreme ecological conditions in the reductive evolutionary development processes of animal
Different groups of animals show phenotypic characters, which have been resulted by the reductive phenomena. The examples are the absence of pigmentation; dwindle of eyes in some cave-living animals, and also the absence of scale in some fishes. These characters are often leaded to evolution of new species with special adaptation that is so called "Regressive evolution". The reductive phenomena...
متن کاملPhenotypic heterogeneity promotes adaptive evolution
Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016